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B_MM, BPBB and JBFB: Three Highly Efficient Linear B-cell3

Epitope Prediction Tools4

5

INTRODUCTION6

B-cell epitopes are antigen deterministic parts of a protein that antibodies or B-cell receptors7

can bind. Identification of B-cell epitopes greatly facilitates peptide vaccine design, antibody8

generation, and molecular diagnosis. The experimental approaches are often laborious and9

expensive, and consequently, in silico prediction models appear quite attractive, which can10

guide the experimental identification processes more efficient, and less costly. Most of the B-11

cell epitopes (90%) consist of amino acids sequentially sequestered but spatially brought into12

proximity by protein folding. These epitopes are called discontinuous or conformational13

epitopes. The rest are called linear epitopes, which are mainly composed of a contiguous14

stretch of amino acids. Though the number is small, linear B-cell epitopes have received15

much research interest since they are easier to predict and more convenient for application.16

Initial prediction of B-cell epitopes was based on amino acid propensity scale (Hopp17

and Woods, 1981). It endued each amino acid a propensity value (e.g., hydrophilicity) and18

recursively calculated the average score over a sliding window of a fixed length. The location19
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of an epitope was delineated according to the average score of a local region. This propensity1

scale strategy was widely adopted by different prediction models (Kolaskar and Tongaonkar,2

1990; Alix, 1999; Odorico and Pellequer, 2003). A subsequent study compared the3

performance of prediction models based on 484 single amino acid propensity scales, and4

demonstrated that these models didn’t perform better than a random model significantly,5

however (Blythe and Flower, 2005). New scales, e.g., AAPs, were explored and used for6

development of new B-cell epitope prediction tools (Chen et al., 2007). Besides, the7

performance has been greatly improved for the machine learning models developed recently8

(Saha and Raghava, 2006; Chen et al., 2007; EL-Manzalawy et al., 2008; Sweredoski and9

Baldi, 2009; Wee et al., 2010). Not like previous propensity scale methods, machine learning10

techniques can take full advantage of information from known epitopes or non-epitopes.11

While most machine learning methods learned amino acid propensity or sequence-12

derived features, Wee et al presented a unique model, BayesB, which adopted a support13

vector machine (SVM) to learn position-specific amino acid composition (Aac) features of14

both epitopes and non-epitopes (Wee et al., 2010). The method was shown to outperform15

other similar applications, such as BCPred (EL-Manzalawy et al., 2008), COBEpro16

(Sweredoski and Baldi, 2009) and Chen et al’s method (Chen et al., 2007), on independent17

datasets. In practice, however, the tool seems to have little use because it predicts too many18

positive epitopes within a query antigen; and, for each searching peptide, it simply classifies19

it as an epitope or non-epitope, without any score, rank or probabilistic confidence. In20

addition, the model only learns Aac features without integration of peptide secondary21

structure (Sse) or solvent accessibility (Acc), which could represent important properties of22

an epitope. In this research, we developed JBFB, a Joint Bayesian Features-based B-cell23
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epitope prediction tool, which integrated all Aac, Sse and Acc features in a Bi-Profile1

Baysian model (Sweredoski and Baldi, 2009). As a complement, we also set up a high-2

effective Markov chain-based model, B_MM, regardless of any position or sequence length3

related information, which merely took the features of Aac conditional on sequentially4

adjacent amino acids. Both JBFB and B_MM apparently outperformed BayesB and other5

software in terms of accuracy, sensitivity, specificity and other performance assessment6

items. Both of them can also assign each peptide a prediction score or probability to be an7

epitope.8

9



4

METHODS1

1. Datasets2

EL-Manzalawy et al annotated a non-homologous 28-mer dataset containing 637 B-cell3

epitopes and 637 non-epitopes. The epitopes were originally retrieved from Bcipep4

database while the non-epitopes were prepared from the protein sequences stored in5

SwissProt database. The 28-mer dataset rather than the more frequently cited 20-mer6

dataset was used for training the models in this research, since the Sse of terminal 37

amino acids at each side of a peptide is often inaccurately predicted by software. The8

original 28-mer peptides were predicted for their Sse and Acc with Sspro 4, and the9

primary sequences, Sse and Acc of 4-mer regions at each side were truncated thereafter10

so as to obtain the sequences, Sse and Acc of central 20-mer fragments. These 20-mer11

peptides, Sse and Acc comprised the training datasets. The training datasets of for models12

of different peptide length (8-, 10-, 12-, 14-, 16-, or 18-mer) were directly derived from13

these 20-mer datasets, truncating equal number of amino acids, Sse or Acc elements at14

each side from sequences in corresponding datasets. The Sse of each peptide was15

represented as a sequence of H, E or C, which represents ‘helix’, ‘strand’ or ‘coil’16

respectively, while Acc was represented as a combination of B or E, representing ‘buried’17

or ‘exposed’ respectively.18

EL-Manzalawy’s 20-mer dataset, Chen’s dataset, and Saha and Raghava’s dataset19

were also adopted, used as independent datasets for model performance comparison.20

2. Position-specific Aac and joint features21
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The Bi-profile Bayesian Aac features were extracted from positive and negative1

peptide datasets, according to Shao et al., 2009, Wee et al., 2010 and Wang et al.,2

2011. The position-specific Aac features of epitopes and non-epitopes were3

furthermore learned with a SVM.4

Extraction of joint position-specific features can refer to Wang et al., 2013a.5

Briefly, let S = {s1,s2…,si-1,si,…,sn} represents a sequence of peptide (epitope or non-6

epitope), where si represents amino acid at position i and n represents total length of7

the sequence. Similarly, let A = {a1,a2…,ai-1,ai,…,an} and B = {b1,b2…,bi-1,bi,…,bn}8

represent Sse and Acc of S respectively, while ai and bi represent the Sse and Acc9

element at position i respectively. For each position of the epitopes or non-epitopes,10

the joint probability of Aac, Sse and Acc can be represented as a probability vector, Pi11

= {si, ai, bi |C}, in which C is epitope or non-epitope, the si, ai and bi could be each12

type of amino acid, Sse element and Acc element, respectively. A 120 × n probability13

profile matrix was obtained for total n positions of either type of peptides (epitopes or14

non-epitopes). The joint probabilities were approximated with a maximum likelihood15

method. Each training sequence was further represented as a vector of joint16

probabilities according to epitope and non-epitope joint probability profiles.17

Therefore, a sequence with length n was finally represented as a vector with 2n18

probability elements. The total m training sequences led to an m × 2n probability19

matrix. A SVM was used to train these position-specific joint features.20

Radial basis kernel function was selected for21

SVM prediction. SVM parameter γ and penalty parameter C were optimized using22

grid search based on 10-fold cross-validation.23
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3. Aac conditional on preceding adjacent position and Markov model1

Given a peptide sequence S = {s1,s2…,si-1,si,…,sn}. For any k (1< k ≤n), P{s1,s2…,sk-1,sk }2

= P{s1,s2…,sk-1} × P{si|s1,s2…,sk-1}. Assume Aac at each position only depends on its3

immediately preceding Aac, which means P{sk|s1,s2…,sk-1} = P{sk|sk-1}. Therefore, P(S)4

can be represented as a one-order Markov chain, P{s1,s2…,si-1,si,…,sn} = ∏ P{sk|sk-1} ×5

P{s1}, where 1< k ≤n. There are two categories of sequences, epitopes (C1) and non-6

epitopes (C-1). For either category C, P(S|C) = P{s1,s2…,si-1,si,…,sn|C} = ∏ P{sk|sk-1, C}7

× P{s1|C}, where 1< k ≤n. Each conditional probability and P{s1|C} can be estimated8

using a maximum likelihood strategy. Both P(S|C1) and P(S|C2) were calculated for each9

positive or negative training sequence. An R value was calculated using the formula: R =10

log{P(S|C1)/ P(S|C2)}, where the logarithm base was 2. A Gaussian distribution was11

approximated for the R values of positive and negative training sequences, respectively,12

using the method described in Wang et al., 2013b. The decision function was also13

adopted to discriminate B-cell epitope and non-epitopes (Wang et al., 2013b).14

4. Performance assessment15

The performance of models was compared based on five-fold cross-validation results.16

The parameters for performance assessment include Accuracy (A), Specificity (Sp),17

Sensitivity (Sn), Receiver Operating Characteristic (ROC) curve, the area18

under ROC curve (AUC) and Matthews Correlation Coefficient (MCC). The definition of19

these parameters refers to Wang et al, 2011.20

21
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EVALUATION REPORT1

1. Improvement of B-cell epitope prediction performance by integration of Sse and2

Acc features3

The Sse and Acc of central 20-mer fragments of training sequences were retrieved and4

compared. As shown in Fig 1A (‘Epitope Sse’ and ‘Non-epitope Sse’), the epitopes5

showed higher coil and lower helix or strand preference than non-epitopes. The Acc6

analysis also demonstrated that the amino acids in epitopes preferred to be exposed (Fig7

1A, ‘Epitope Acc’ and ‘Non-epitope Acc’). Consistent with prior knowledge about8

antigenic regions, the results indicated that the B-cell epitopes tend to be more flexible9

and hydrophilic.10

The position-specific Sse and Acc features were integrated with Aac profiles in a11

Bayesian model and trained with SVM. The classification performance of the generated12

model, JBFB, was compared with that of BPBB (Bi-Profile Bayes based B-cell prediction13

tool), a revised version of BayesB, which learned Aac features only. Supplemental Table14

S1 listed the optimized parameters of JBFB and BPBB models. Fig 1B showed the ROC15

curves of these two models classifying the training data based on five-fold cross-16

validation results. Apparently, JBFB outperformed BPBB, indicating the Sse and Acc17

features can be used to strengthen the power of distinguishing B-cell epitope and non-18

epitopes. Table 1 also gave the Sn, Sp, A, AUC, and MCC, for all of which JBFB showed19

higher values than BPBB.20

Permutation was performed to the training datasets, and a random model was set up21

based on the permutated data. With the same Bi-Profile Bayesian feature extraction and22
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SVM training, the random model only distinguished epitopes and non-epitopes weakly1

(Fig 1C), demonstrating the good classification performance of JBFB is potentially due to2

the unique joint features of Sse, Acc and Aac in B-cell epitopes rather than3

overrepresentation of the features by complex SVM hyperplanes.4

5

6

2. Discretion of B-cell epitopes and non-epitopes based on neighbor position-7

conditional Aac features and a Markov model8

Besides the Sse and Acc preference in B-cell epitopes, we also observed the constraint of9

Aac posed by the amino acid species at its preceding neighbor position. For B-cell10

epitopes, amino acids were not evenly distributed when the amino acid was given at its11

preceding position. Fig 2A showed all the amino acids whose composition probability12

conditional on its preceding Aac was significantly different between epitopes and non-13
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epitopes (Bonferroni corrected binomial test, P<0.05). A Markov model was initiated and1

the likelihood ratios were calculated according to the first-order position-conditional Aac2

probability profiles of epitopes and non-epitopes. The likelihood ratios (R) of epitopes3

and non-epitopes were further approximated as two distinct Gaussian distributions (Fig4

2B). A discretion model, B_MM, was set up based on the R distributions. A five-fold5

cross validation demonstrated the model had an excellent classification power with an6

AUC of 0.857, even better than JBFB (Fig 2C; Table 1). Permutation test also7

demonstrated that B_MM performed significantly better than random models (Fig 2C).8

9

3. Epitope length and Performance comparison10
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1

It remains unclear about the optimized length of B-cell epitopes. Therefore, we also2

tested the performance of the models with different epitope length. Epitopes of 10-mer,3

12-mer, 14-mer, 16-mer, 18-mer, 20-mer and 22-mer were constructed and trained with4

JBFB, BPBB and B_MM algorithms, respectively. For both algorithms, the performance5

deteriorated as the length being reduced, though it only slightly decreased for JBFB6

models but deteriorated strikingly for B_MM 12-mer and 10-mer models (Fig 3). For7

either of the algorithms, performance difference was extremely subtle for the 22-mer and8

20-mer models (Fig 3); the optimized length of JBFB, BPBB and B_MM models was9

therefore set as 20-mer.10

JBFB, BPBB and B_MM 20-mer models were further trained with other independent11

datasets, followed by a performance comparison with other software tools, including12

BayesB, BCPred, ABCPred and Chen’s method. Generally, JBFB showed the best13

performance (Table 2).14

15
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Table 1. Five-fold cross-validation performance of JBFB, BPBB and B_MM1

Model Sn vs. Sp (%) A (%) AUC MCC

BPBB 71.41 vs. 70.47 70.94 0.7699 0.4188

JBFB 74.69 vs. 75.16 74.92 0.8324 0.4984

B_MM 75.67 vs. 79.43 77.55 0.8570 0.5514

2

Table 2. Comparison of model performance with independent datasets3

Dataset Method1 Sn Sp A AUC MCC
BCPred_20 BCPred 0.726 0.632 0.679 0.758 0.36

AAP 0.529 0.752 0.641 0.700 0.288
BPBB 0.697 0.710 0.704 0.774 0.407
JBFB 0.724 0.750 0.737 0.807 0.474
B_MM 0.732 0.635 0.683 NA 0.368

ABCPred_20 ABCPred 0.571 0.716 0.644 NA 0.287
BPBB 0.66 0.73 0.671 0.768 0.391
JBFB 0.684 0.769 0.718 0.792 0.454
B_MM 0.759 0.639 0.699 NA 0.400

AAP_20 AAP 0.609 0.754 0.711 NA 0.366
BPBB 0.671 0.71 0.691 0.756 0.382
JBFB 0.693 0.714 0.703 0.770 0.407
B_MM 0.750 0.622 0.686 NA 0.375

1 The performance of different models were evaluated based on the average 5-fold cross-validation results4

except B_MM, for which the performance was evaluated according to direct predictions on each test5

dataset with the original model trained on BCPred_28 centered datasets.6

7

Table S1. Optimized parameters for BPBB and JBFB models with a 10-fold cross-validation grid search8

Model Featuresa Kernel Gamma Cost

BPBB Aac RBFb 2-10 8

JBFB Joint Aac, Sse, Acc RBF 2-11 16

a. Position-specific features;9

b. Radial basis kernel function.10

11
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APPLICATION1

Both standalone version of the software tools and the webserver were developed to2

implement B_MM, BPBB and JBFB. The tools and the webserver could be available via3

the website: http://61.160.194.165:3080/B_pred/.4

With the webserver, users could implement the three models simultaneously or5

independently. The decision cutoff is set as 0 for the models by default, meaning that a6

fragment with a value larger than 0 would be predicted as a positive B epitope. Users can7

also change the cutoff by themselves. For example, a larger cutoff (0.5 for example) is8

recommended if larger precision is desired.9

10

http://61.160.194.165:3080/B_pred/.
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